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I, INTRODUCTICN

In the last fourteen years, the use of the pulsed neu-
tron source techniques for the investigation of the kinetic
behavior of neutrons in matter has been wide spread (25, 26,
27). Diffusion and slowing down parameters can be calculated
from the measurement of the migration, thermalization, and
absorbtion of neutrons as a function of time. The pulsed
assemblies are of one of twc general categories. The first
consist of or include meocderator materisl, whereas the second
consist mainly of 2 non-moderating material usually of a me-
tallic nature. The latter are generally referred to in the
literature as fast assemblies., It i: these fast assemblies
which will be considered in this work.

In the study of fast material assemblies subjected to a
neutron pulse, it becomes important to know the density of
neutrons as a function of position, velocity, angle, and time
in the medium, Solutions for the neutron density can be found

by analytical methods such as the solution of the equation

%g% = HZ + Sp(t)

This is the time dependent Boltzman equation for a neu-
tron flux from an impulse source. For an exact solution,
certain simplifying assumptions are reguired, and these as-

sumptions then apply only to specific cases. Some of the



usuel assumptions made are those of a constant mean free
path and isotropic elastic scattering.

The neutron density in fast systems can alsc be measured
experimentally. The experiments require sophisticated, ex~
pensive equipment, and few have been performed.

One way to tackle the problem of determining the density
of neutrons in a fast assembly resulting from & pulsed source
is the use of the Monte Carlo method. The probabilistic na-
ture of neutron interactions makes the Monte Carle technique
useful,

This method was used in the investigations which are pre-
sented in this thesis. The computer code "PULSE" writiten by
A. E, Profio (18, 19) was utilized for the computations with
some modifications and alterations dictated by (a) the need
to modernize and complete the code and (b) by the specific
regquirements of the IBM 360 model-50 computer available at
Iowe State University,

Small heavy metal 2ssemblies were used in the investi-
gation. The geometricel shape of the assembly can be either
a8 rectangular block, @ cylinder, or a sphere. The purpose
was to find the time dependence of the density and to inves-
tigate the pessibility of expressing such a dependence as 2
simple decay constant. The results were also compared, when-
ever possible, with experimental results which are scarce

but which are currently being investigated. With increasing



emphasis on fast reactor systems, the investigation of die-
away times in small uranium assemblies becomes important.
Hence, uranium was the primary material in the assemblies
considered.

Due to the small size of these assemblies, the neutron
makes only a few collisions during a lifetime. The compu-
tation time using the Monte Carlo technique is then not too
long, a fact that makes it attractive for application in
such assemblies. In addition, the transport calculation may
not be reliable in these cases if drastic simplifying as-
sumptions are made. It seems therefore that the Monte Carlo
method is well fitted for investigations of time dependent
neutron density calculations in metallic assemblies of rela-

tively small size.



II, THE MONTE CARLO METHCD AND ITS APPLICATION
IN THE "PULSE" CODE

A, Historical Background

The Monte Carlo Method originated during the early 1940's
as a result of suggestions advanced by J. von Neumann and §,
Ulam at Los Alamos. However, virtually nothing appeared in
print until about 1949, In that year, the first symposium
on Monte Carlo was held at Los Angeles under the sponsorship
of the Rand Corporation and the National Bureau of Standards
in cooperation with Oak Ridge National Laboratory. The pro-
ceedings of this conference were published by the N,B.S. (17)
in 1951.

A second symposium was held at the University of Florida
in 19%4. It was sponsored by Wright Air Development Center
of the Air Research and Development Command, A. W, Marshall
in the introduction to the proceedings of this second sym-
posium (16, p. 4) says the following:

"The most important practical applications

thus far have had a probabilistic basis; the influ-

ence of the original Monte Carlo idea has been to

suggest treating them directly as probabilistic

problems rather than attempting a difficult, if

not impossible, analytic solution., The transla-

tion and later retranslation of problems from

probabilistic terms to non-probabilistic mathe-

matical problems and back again has been by-

passed."

There are many references which describe both theoret-

ical and applied work that has been done in the field (2, 4,



5, 13, 14, 1%, 16, 17) and no further background will be

given here.

B. The Monte Carlo Method as

Applied to the Physical Problem

Since neutron interactions within a material are des-
cribed by neutron cross sections, which in essence are prob-
abilities of interactions, the Monte Carlo technique can be
applied to investigate the neutron transport process.

The problem which is to be solved here is, to find the
number of neutrons leaking from the surface of an assembly
as a function of time. The assembly is composed of one or
more heavy metal isotopes. The neutrons arise from a neu-
tron pulse occurring at time t = O, The pulse of neutrons
may be considered as incident on one face of the assembly as
in the case of a cube or as generated inside the assembly as
in the case of a sphere.

The Monte Carlo technique, as employed here, follows
one neutron at a time through the assembly. The neutron's
path length between interactions, and the type of interactions
(fission, capture, or scattering) which it undergoes is de-
termined by the material's neutron cross sections and angular
distributions for various reactions. These data must be
obtained by experiment or theory for the materials in the

assembly and must be supplied to the code by the user.



The individual neutron is followed until it crosses the
boundary of the assembly, or is absorbed, or is scattered
over 100 times, or until its energy falls below a certain
minimum. These latter two restrictions are used to prevent
a neutron from being followed for too long and are not per-
tinent to the physical problem.

The above process is repeated over and over for a large
number of neutrons, each of which produce a2 history. By
combining the results of all histories, it is possible to
approximate the actual physical behavior of the assembly
under pulsed conditions. This probabilistic treatment does
not thave the generality of an analytical solution but it
corresponds closely to the process of neutron interactions
in matter which is probabilistic in nature.

The time dependence is incorporated into the Monte Carlo
code by setting the time t equal to zero at the source, After
calculating the distance d to the next collision from an ex-
ponential distribution of free paths about a mean free path,
the time of flight t is calculated using

t = d/v

where v is the velocity of the neutron. If the neutron should
leak out of the assembly, the neutron is placed at the bound-
ary, and the distance D to the boundary from the last col-
lision is found. The time of flight is then



t = Dfv

In the event of fission the starting time for the new
particle becomes the lifetime to that point of the coriginal
neutron. The time to exit, e.g. by leakage, absorption,
falling below a certain minimum speed, by exceeding a spec~
ified maximum number of collisions, is printed in the output.

The first time moment can then be calculated by

1

t] =T t./1
[t =7 &

=]

where ti is the lifetime of the i-th neutron and I is the

total number of neutrons.

C. The "PULSE" Code

1. Genersl description

A Monte Carlo Code named “"PULSE" to handle the physical
processes described above was written by A. E. Frofio (18,
19). This code was used in this work with certain modifice-
tions added, including the translation from Fortren 1I to
Fortran IV. The program is listed in Appendix F.

A, E. Profio sums up the usefulness of the Monte Carlo
technique when he states (19, p. 1)

"The use of straight analog Monte Carlo is
feasible because the program is designed for small
highly absorbing systems excited by fast neutrons,

where the neutron makes only a few collisions on the
average. The time of computation is essentially



proportional to the mean life time in the medium,

and computations of long lifetime systems is re-

stricted by the computation center."

Since the laws of scattering, absorbtion, fission, and
their cross sections are known for a single reaction (micro-
scopic level) the "PULSE" code follows each individual neu-
tron through the fast assembly until it is absorbed or leaks
out. It does this for a large number of neutrons, giving
a statistical approximation to what physically can be ex-
pected to happen when a burst of neutrons from a pulse source
enters a fast assembly,.

An overall description of the program follows with
specific details related in the Appendices.

A simplified flow diagram is included in Figure 1 for
reference, The MAIN program first reads each data card and
prints the information for future reference. These data
cards include neutron source coordinates, atomic density
(of either one or two materials o¢r isotopes), the micro-
scopic cross sections, fission velocities, limiting vel-
ocities, anisotropic distributions for elastic scattering,
and other specific data required by the program. The MAIN
program multiplies the microscopic cress sections by the
atomic density before storing and printing them. The MAIN
alsoc starts the computation of each neutron history and con-
tinues until all the source histories are run. It then

checks to see if fission neutrons are present. These are
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a result of fission taking place, and each of them is fol-
lowed as if they were generated by the source.

Considering only source neutrons now, the MAIN begins
the computation by calling the subroutine SCURCE. This is
provided input which includes the type of source (plane,
point within the target, point outside the target, and an
option for including a configuration of the user's choice).
This routine returns the x, y, z coordinates, velocity, time,
and direction cosines of the neutron,

The MAIN now calls the subroutine SIGMA, SIGMA calcu-
lates the cross sections for elastic scattering, inelastic
scattering, fission, and capture for each nuclide present,
the total mean free path, and the probabilities for elastic,
inelastic, fission, and capture interactions. The descrip-
tion of the methods used for calculation of these probabil-
ities is given in Appendix C. SIGMA also calls an auxilliary
subroutine GROUP to determine in which of a possible twenty
groups, the velocity lies. The velocities at the lower limit
of each of these groups is included in the input in units of

10°

cm/sec. These limits have been chosen arbitrarily in the
range of 0.3-2.8 MeV. SIGMA also uses the subroutine FIND
tc linearly interpolate between the cross sections. These
cross sections were input at each velocity group boundary
mentioned above., Contrel is returned to the MAIN program

which calls FLITE.
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FLITE uses a pseudorandom number generated by the rou-
tine RANDU provided by the I.S.U, Computation Center (12).

A detailed explanation of this routine is included in Ap-
pendix A, This pseudorandom number is used to select an
exponential distribution of free paths which a neutron will
travel before suffering another collision. FLITE checks the
pseudorandom number to see if it is less than 0.0000454, and
if it is another pseudorandom number is generated. This cor-
responds to the rejection of any free paths greater than 10
times the mean free path calculated in SIGMA, 1In addition

a time variable (ITIME) is computed by dividing the free
flight distance (DIST) by the velocity (VEL). Control is
again returned to the MAIN program.

The MAIN now calls the subroutines DTPB, DTCB, or DTSB.
These subroutines compute the distance to the nearest boundary
of a plane, cylinder, or sphere respectively. Only one of
these is called depending on the shape of the target speci-
fied in the input. The MAIN now calls POST,

POST compares the distance to the nearest boundary with
the mean free flight distance (DIST) to see if the neutron is
within the boundaries of the assembly. If it is not, the time
of flight is updated by @ quantity equal to the distance to
the nearest boundary (DISTB) divided by the velocity of the
neutron (VEL) and control is returned to the MAIN. If the
neutron is within the boundary the time is updated by the
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quantity (DIST/VEL) and control is the returned to the MAIN
program.

The MAIN now decides, using the information from POST,
if the neutron leaked out or is still in the assembly. If
it leaked out the subroutine LEAKTAL is called. This routine
sets up a two dimensional array which categorizes the neutron
according to its energy when it leaks out and the time since
the neutron left the source. The MAIN adds one to tally of
the number leaking out of the target (NL). If the neutron
is within the boundaries the main calls COLIDI of COLID2 de~-
pending on the number of isotopes or elements present in the
target.

COLID]1 or COLID2, hereafter referred to as COLIDX, causes
a pseudorandom number to be generated. Using this number the
type of interaction (elastic, inelastic, fission, or capture)
is determined as is the nuclide which took part in the re-
action if more than one nuclide or isotope is present in the
target assembly. Control is returned to the MAIN which calls
the appropriate subroutine ELSCAT, INSCAT, FISSIN, or CAPTAL
depending on the type of interaction determined by the COLIDX
subroutine. The method employed for determination of the
type of interaction is further explained in Appendix C.

ELSCAT is called if the reaction determined by the COLIDX
subroutine is elastic scattering. This routine compares the

velocity with an input parameter to determine if the scatter-
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ing was isotropic or anisotropic. If isotropic, the center
of mass direction cosine (GAMMAC) is computed by the formula
CAMMAC=2R~-1 where R is a pseudorandom number generated by
RANDU, Now a check is made of the mass of the scattering
nuclide to see if a conversion from the center of mass to
laboratory system is necessary. This is done by comparing
the atomic mass of the target nuclide to that specified by
the input constant (ALIMX). If a conversion is to be made
a subroutine CMLAB is called and the new velocity and direc-
tion cosines are computed as described in Appendix E. If
no conversion is necessary ISOANG is called. This is a
subroutine which computes the new direction cosines (alpha,
beta, and gamma). If the scattering is anisotropic a sub-
routine (ANGLE) is called which computes a new direction
cosine (GAMMA) from an angular distribution which is pro-
vided as input. Appendix E describes the methods used for
determining such data from a given distribution. The sub-
routine ELTAL is then calied which tallies the neutron in a
two dimensional array. One dimension is time, and the other
is space. So the neutron is registered in a certain time
interval and in a certain coordinate interval. Also, one is
added to the tally (NS) which is a tally of the number
scattered (elastically or inelastically).

If inelastic scattering has taken place, the routine
(INSCAT) is called. Scattering is assumed isotropic for
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this work. If the velocity is such that discrete level
scattering takes place, the subroutine LEVEL is used to
determine the probabilities of scattering from each of the
levels for each energy group. These are used to determine
which level does the scattering and the new energy is the
incident neutron energy minus the level energy.

For high energy incident neutrons, scattering is as~-
sumed to take place in the continuum region.

The level distribution in the continuum regioen can be
described by the evaporation model of the nucleus (8, 23,
27). Here the value of the nuclear temperature is usually
assumed to vary as JE, a gquantity represented by VEL in the
"PULSE" code. The distribution of the fixed energy E' for

the scattered neutrons is calculated from

'ex "E' ¥
fE'exp(-E'/6)dE" CLB <&

0 elsewhere

where © = nuclear temperature = constant JE. The value of ©
depends on the nuclide and may be found in the references (8,
23, 27).

Profio has reduced the above model for computer use in
the subroutine INSPEC. The new velocity (Vr) is computed

using a probable distribution for the quantity Vr/vmax‘l

lProfio, A, E.y General Atomic, San Diego, California.
Input constants for "PULSE". Private communication. 1967.
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Vmax is the square root of Emax‘ Emax is an input constant
(CIn) times the incident velocity (VEL). The new direction
cosines are computed by the subroutine (ISCANG). Again,
one is added to the tally (NS) and control is returned to
the MAIN program,

If fission occurs the subroutine FISSN is called. The
average number of fission neutrons is calculated by use of

the following formulas

v vf+bv

Vg and 3 are input constants corresponding to the particular
nuclide present in the assembly. A whole number for v is
theri chosen with the help of 2 pseudorandom number. A cum-~
ulative probability table is used to determine the velocity
of each of the fission neutrons, Their coordinates, velocity,
and the times are recorded on tape for running after all the
source neutrons have been run. Also, the whole number closest
to the value v is added to the tally (NF) which is the number
of fission neutrons. Control is returned to the MAIN for
the continuation of the source histories.

If capture takes place CAPTAL is called and one is added
to the array KAPT in the appropriate time interval,.

When all the source histories have been run, the tapes
containing the fission neutron dataz, mentioned previously in

the discussion of FISSH, are rewound. The program runs using
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the data on the tapes instead of the source data. Any new
neutrons are again recorded on tapes. These tapes are then
rewound and above process continues until there are no more
fission neutrons generated.

The MAIN now outputs the reguested data and the program
is ended,

Certain computational "tricks" have been incorpcreted
in the program to economize on computer time. For example,
the entire output is recorded after every 500 histories in
addition to the final recording which occurs after all the
source histories have been run., Thus, in case the program
is dumped prior to the final ocutput some information is
salvaged. The above tricks may or may not be used and
elimination of these will in no way interfere with the run-

ning of the program.

2. Qutput description
The output of the "PULSE" code consists of the fellow-
ing tallies:

NL The number of neutrons leaking out of the target
assembly

NC The number of neutrons captured within the as~
sembly

NS The total number of scattering interactions,

both elastic and inelastic



NLTD

NGTR

NGZR

NLME

NGER

NOSL

Also

LEAK

NELS
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The number of fission neutrons resulting from
the fission reactions

The number of interactions which took place in
less than the specified time delay input con-
stant (TD)

The number of interactions which took place in
time greater than 100 time intervals

The number of neutrons which suffer elastic col~-
lisions and end up outside the range of the Z
coordinate interval

The number of neutrons ending up with an energy
less than a minimum specified energy

The number of neutrons ending up with energies
greater than 10 energy intervals

The number of neutrons suffering more than 100
scattering interactions and therefore dropped

from the program

included in the output are the following arrays:

A two dimensional array (time, energy) specify-
ing the time and energy of each of the neutrons
which cross the surface of the assembly

A two dimensional array (time, Z-coordinate)
specifying the time and position of each of the
neutrons whenever they suffer an elastic col-

lision
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NIMS A one dimensional array (time) specifying the
time for each inelastic collision
NFIS A one dimensional array (time) specifying the
time for each fission reaction
KAPT A one dimensional array (time) specifying the
time for each capture interaction
In addition to the above tallies and arrays, the vari-
able ITOT is output after every 500 histories. ITOT is a
running tally of the number of histories which have been run.
In this way if the program should hang up or if the machine
should fail the spot in the program can be determined where
a failure occurred and the program can be resumed from there.
Also, since all results are recorded on tape as well as
printed, the variable ITOT will be the total number of his-
tories retained on the output tape.
All input data are also printed ocut for reference as is
the variable number which initiates the random number gener-

ating routine explained in Appendix A,

3. Input description

A number of input variables are required for the code
"PULSE". The order of appearance in the data deck and a
short description of each variable are given below. A more
detailed description of these parameters can be found in

two reports by A. E. Profio (18, 19). If the variable is
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an array, the dimensions of the array are given in paren-

thesis following the variable,.

Card #l

Card #2

Card #3

Card #4

XS, YS, ZS, PARA, PARB, PARC, THETA, KS, NEUT

XS, YS, and ZS are the source coordinates; PARA,
PARB, and PARC specify the source velocity; THETA
is the source time (usually 0.0); KS is a code
integer giving the source option as mentioned in
section II; and NEUT is the number of histories
being run.

SP (10)

SP is an array which specifies an anisctropic
source distributien. It consists of value of the
Cosine ©, In this work, the source was considered
isotropic and values of 1.0 were used for all the
SF data.

XMAX, YMAX, ZMAX, RMAX, KAS

XMAX, YMAX, ZMAX and RMAX give the dimensions of
the assembly in units of cm. The first three are
used if the assembly is rectangular, and RMAX is
used if it is 2 cylinder or a sphere. KAS specifies
the shape of the target (l-block, 2-cylinder, 3-
sphere).

D, TCH, EMIN, ECH, KT1l, KT2

TD is the time delay in the source; TCH is the
time channel withy EMIN is the minimum tallied
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energy (MeV); KTl and KT2 are tape number used
in the FISSN routine which are supplied by the
computation center.

Cards #5-6 P (20)
This is an array specifying a Maxwell-Boltzmann
distribution for inelastic scattered velocities
from the continuum. The values are normalized
velocities for an index K.

Cards #7-8 VBOUND (20)
VBOUND is an array of velocities. The units are
logcm/sec. It is at each of these twenty velo-
cities that the cross sections used in "PULSE"
are evaluated.

Card #9 ADl, Al, ALIM1l, SLIM1l, CINl, VST1l, FNUl, DELNU1,
KIAL
In the above the "1" following each variable sig-
nifies nuclide #1 in the target. ADl is the atomic
density (1024/cm3); Al is the mass number; ALIM1
is the mass below which & center of mass to lab-
ratory reference system conversion must be made;
SLIM]1 is the velocity above which anisotropic
center of masg elastic scattering can be assumed
to occury CIN]l is a decimal number used in the
routine INSPEC to determine the most probable vel-

ocity from the input velocity when inelastic



Cards #10-11

Cards #12-13

Cards #14-15

Cards #16-17

Cards #18-37
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scattering from the continuum is assumed (7, 19,
22, 23, 26); VSTl is the velocity below which
individual level inelastic scattering occurs;
FNUl and DELNUl are decimal numbers used in the
FISSN routine (see section II); and KIAl is a
constant used to determine isotropic or aniso-
tropic inelastic scattering (l-isotropic, 2-
anisotropic).

SBE1 (20)

This array consists of elastic cross sections
(1072%cm?) evaluated at the velocities given in
VBOUND. Again the "l1" signifies that the values
are for nuclide 1.

SBI1 (20)

Included in this array are the inelastic cross
sections (10"2%cm?). Each evaluated at the
velocities in VBOUND.,

SBF1 (20)

The values of these cards are thos of the fis-
sion cross sections (10°24cm2).

SBC1 (20)

These are the cross sections for neutron capture
(10"2%cm?),

AP1 (10, 20)

APl is a two dimensional array specifying the



Cards #38-39

Cards #40-79

Cards #80-81

Card #82

Cards #83-154
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angular distribution in anisotropic elastic
scattering. The values are those of the cosine
€ for each of the twenty velocities given in
VBOUND,

VL (20)

VL is an array for up to twenty inelastic scat-
tering level velocities (loqcm/sec).

SBL1 (20, 20)

SBL1(L,J) is a two dimensional array specifying

0'24cm2) for inelastic

the cross sections (1
level scattering where L is the level number,
and J is the velocity group number from VBOUND.
FP1 (22)

This array specifies fission neutron velocities
(logcm/sec) and is used in the FISSN routine.
This card contains the same variables as card
#9 except that the values are for nuclide #2.
If there is only one nuclide in the assembly
zeroes are punched for the values on this card
and it is then the third from the last card in
the data deck.

These cards contain the variable data for nu-
clide #2. The arrangement is the same as for

cards #10-81, 1If only one nuclide is used these

cards are not needed in the data deck and are



Card #15%5

Card #156
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therefore left out of the pack.

IX

IX is a number of one to nine digits and must

be odd. It is used to initiate the random num-
ber routine RANDU. This is always the second to
the last card in the data deck and is needed
regardless to the number of nuclides used.

JJ

This variable is used to specify the number of
different energies of the source neutrons. If

a monoenergetic source is used, JJ is eqgual to
1, If a spectrum is used, there must be a card
containing the same information as is contained
on card #1 for each of the ehergy groups. These

cards will follow this card in the data pack.
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III. THE DATA USED IN THE COMPUTATIONS

Initially in this work, the material used in the assem-
bly was U-238 with a monoenergetic (1MeV) source.

Uranium has an atomic density of 0.0472 X 1024/cm3 and
a mass of 238, The 1 MeV neutrons have a velocity of 1.385%
X logcm/sec.

The angular distribution for inelastic scattering was
assumed to be isotropic and this was confirmed using BNL-400
(10). The velocity was found to be isotropic below a velo-
city of 0.875 X lOgcm/sec. Above this velocity the differ-
ential distributions in BNL-400 (10) for elastic scattering
in U-238 at various energies were integrated. From the in-
tegrated curves, values for the array APl (anisotropic dis-
tribution for elastic scattering) were obtained as explained
in Appendix E,.

The first 16 values of the velocity group array VL1
range from 0,3 MeV to 1.6 MeV at 0.1 MeV intervals. The
next 6 values are at 0.2 MeV intervals giving anenergy range
of 0.3 to 2.8 MeV.

The cross sections needed for input into the "PULSE"
code included the elastic scattering, inelastic scattering,
capture, and fission cross sections. In this work these need
only be evaluated over the energy range 0.3 MeV to 2.8 MeV

as 1 MeV monoenergetic source is used. However, the code can
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be run with a source energy spectrum, and in this case the
energy range must be extended.

Various sources were used to obtain the best possible
values for the cross sections.

For the capture reactions, the values used were from
BNL-32% (11). These were compaied to those given in ENDI-‘/Bl
which were supplied by Brookhaven Sigma Center and were found
to be in agreement.

For the fission values, BNL-32% was again used and these
data correlated with those supglied by ENDF/B.

None of the references used listed the elastic scatter-
ing cross sections for the isotope U-238. Therefore, the
values were taken from the natural uranium listings. In
doing this one must assume most of the scattering is due to
U-238. This is a reasonable assumption due to the fact that
the concentration of U~23% in natural uranium is small, and
its scattering cross section is small. The values were ob-
tained by subtracting the non-elastic values from the total
cross sections. BNL-325 was used again, There were no values
for these values in ENDF/B.

The inelastic cross sections were obtained from the non-

elastic values for the uranium cross sections. In doing this

lMay. V. Brookhaven National Lab., Sigma Center, Upton,
Ngw York. ENDF/B nuclear cross sections. Private communica-
tion. 1967.
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one assumed three possible non-elastic processes (fission,
capture, and inelastic scattering). The fission and capture
values were obtained as explained above, and their sum was
subtracted from the non-elastic cross sections. The dif-
ference was taken as the value for inelastic scattering cross
sections., Ageain, BNL-32% was used as the reference. Some of
the values obtained agree with those in ENDF/B. This latter
reference was far too incomplete to be of much value in this
case except as a check for other sources.

For inelastic scattering from individual levels, there
is much discrepancy as to the level energies, the number of
levels, and the crcss sections at each level. In the present
work experimental data supplied by Dr. D. A, Lindl was useds
these data were deemed as the most complete set. Some of
these values obtained by Lind are in agreement with those in
BNL-32%. However, the latter contains an incomplete set of
data and was not used as a reference for level scattering.

The fission spectrum for U-238 was taken tc be the same A
as that of U-235., The spectrum used was taken from an arti-
cle by R. L, Henkel (9). This was integrated and values for
the array FPl were obtained as described in Appendix E.

FNUl and DELNUl were obtained from ANL-5800 (22).

The constant CINl was obtained by private communication

1Lind, D. A.y University of Colorado, Boulder, Colorado.
Inelastigﬁcross section levels for U-238, Privete communica-
tion. 7.
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from A. E. Profiol with the aid of the data found in the
references (8, 23, 24, 27).

The final run of this work was made with natural uran-
ium., This metal consists of 99.3% U-238 and 0.7% U-235,
Data were found for U-23% from the same sources as mentioned

above for U-238.

lProfio, A. E.y General Atomic, San Diego, California.
Input constants for "PULSE", Private communication. 1967.
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IV. RESULTS AND DISCUSSION

The primary purpose of this work, as stated earlier,
was to investigate the leakage of neutrons following the
injection of a fast pulse from metallic assemblies of var-
ious shapes by the hMonte Carlo method.

Also, an investigation was made as to the possibility

of expressing the leakage in the form

N=Ce Mt

In the above expression, N is the number of neutrons

leaking out of the assembly after time t; C is a constant;

A\ is a time delay constant with units of inverse time; and

t is the time after the pulse injection. If the expression
is valid, then log N plotted versus time should be a straight
line with a slope \.

As an attempt to investigate the afore stated postulates,
three runs were made with a spherical assembly of U-238., A
1 MeV monoenergetic source of neutrons was assumed to be at
the center of the spheres. The three runs were made with
spheres 15 cmy 20 cm and 30 cm in diameter.

The resulting leakage from the sphere surface is shown
plotted versus time in Figures 2, 4, and 6. The number of
histories were 8,000, 7,000, and 8,000 for the 1% cm, 20 cm,
and 30 cm spheres respectively.

A plot of the data was also made on log paper, and the
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least squares fit technique was applied assuming an eguation

of the form

In N=1nC + )\t

1 1

The values found for \ were 0,305 nsec ~, 0.179 nsec —,
and 0.1475 nsec™} for the 15 cmy 20 cmy, and 30 cm diameter
spheres respectively.

The logarithmic plots aleng with the line having the
least squares fitted slope are shown in Figures 3, 5, and 7
for the 1%, 20, and 30 c¢cm diameter spheres,

A second set of three runs was made on a cube of U-238
with 1 MeV neutrons uniformly incident on one of the faces.
The leakage is plotted as a function of time in Figures 8,
10, and 12 for the 1% cmy, 20 cm,y, and 25 cm cubes, The number
of histories for each were 8,000, 10,000, and 8,000 respec~-
tively.

Again, logarithmic plots were made as shown in Figures
9, 11, and 13, and 2 least squares fit was applied. The
results were the straight lines shown in the above mentioned

1

figures. The slopes are 0.1695 nsec ~, 0.1%6 nsec™ !, and

0.101 nsec”!

respectively.

Finally one run was made using natural uranium. The
assembly was & 15 cm diameter sphere with a 1 MeV source at
the center. The leakage is plotted versus time in Figure 14

and the log plot showing a least squares fitted line with a
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slope of 0.219 nsec™? is shown in Figure 1%. This run con-
sisted of 8,000 histories.

A mean die-away time t can be found by

Tz = 1/

Table 1 is a summary of the results obtained from the
runs,

Certain trends are shown in Table 1. The mean die-away
time increases as the volume of the target assembly increases.
This follows naturally where one considers the physical situ-
ation, With increased volume, there is an increase in mate-
rial. This in turn increases the number of reactions that a
neutron can have while in the assemblY} The increase in the
number of reactions increases the mean time it takes to leak
out of the target assembly. A plot was made of the mean time
versus the volume of the sphere and cubes. The results are
shown in Figure 16. From this figure no conclusions as to
functional behavior of die-away time with respect to volume
can be drawn.

Attempts to correlate the die-away time behavior to sur~
face area were made in Figure 17 and Figure 18 respectively.
As in the case of the time-volume correlating, no conclusions
can be drawn about functional behavior of the die-away time
and the surface area or volume to surface area ratios.

Cther trends cbserved in Table 1 and Figure 16 are that
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Table 1, Compiled results

Dia. of U-238 Spheres Size of U-238 Cube Di3- Of nat.

Y. Sphere
15 cm 20cm 30cm 15¢m 20cm 2%cm 1%cm
k(nsec'l) 0.30% 0,179 0.147% 0.169% 0.1% 0.101 0.219
r(nsec) 3.28 5.%%8 6.78 5.90 6.41 9.90 4,%7

for equal volumes of material, the die-away time in the cube
are considerably longer than in the spheres. In reactor
theory (6) it is learned that a spherical assembly gives the
lowest leskage due to the low surface to volume ratio. The
apparent contradiction can be explained by considering the
manner in which the spherical and cubical assemblies were
pulsed. The sphere was pulsed at the center, therefore for
neutrons to leak from the assembly the vector sum of their
path lengths must be that eguivalent to cne radius length,
However in the cubical assembly the neutrons were uniformly
incident on one face. The angle of scattering at 1 MeV ener-
gies is an isotropic with a preference toward the forward
direction., Therefore, except for those neutrons which are
scattered backward and leak out upon arriving, the majority
must travel 2 greater distance, of the order of the cube side,
in order to reach a surface. This accounts for the longer

die-away time in the cubical cases.
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From the log N plots, the data at the larger times ap-
pears widely scattered. This should be expected since the
number of neutrons is very small making the statistics of the
problem poor. On the other hand at short times after pulse
injection, the slope of the log N curves is smaller than the
slope 2t later times. These neutrons have had no or at most
a very few collisions before leaking out of the assembly.
Therefore, it is doubtful they will obey any type of exponen-
tial behavior. Only those suffering @ number of collisions
can be thought of as likely to obey an exponential decay.
Besides, since the neutron population in the assembly (and
hence alsc the leakage) must build up from a zero level it
is only natural that some sort of peak must be exhibited in
the histograms. The question arises, however, why the slower
slope continues for guite a time after the peak is reached.

A physical argument is offered for this phenomenon.

At times very shortly after t = O the distribution is
flat as in Figure 19(b) whereas at later times}it curves as
shown in Figure 19(c). Since the leakage rate is propor-
tional to the gradient of the flux just inside the boundary
the leakage rate must be larger in the case of Figure 19(c¢)
than in Figure 19(b).

It is also impertant to note, in Figures 2, 4, and 6
showing the number of neutrons leaking from the spherical

assemblies, that nc¢ neutrons leak cut until 4 sec, 6 sec,
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Figure 19, Neutron distribution across cube face at times
very close to t = 0 and at later time

and 10 sec respectively. These are the times it takes for a
1 MeV neutron to travel a distence of one radius for each of
the spheres. This must be true as the neutrons start at the
center of the spheres, and the fact that this feature appeared
in the results as expected provides an additional check on the
reliability of the code.

At the time of this writing there were nc final experi-
mental values for comparison., T. Gozani of General Atomic
is at the present working on a 51 cm diameter sphere of U-
238y but his final results are not available. In preliminary
results (7) he was apparently not finding an exponential die-
away time, which is contrary to earlier reports (20).

Work has been done on moderating materials, e.g. beryl-
lium (2%) for which the leakage did not obey a single ex-
ponential law, but a correlation to & heavy metal is not

possible in this case.
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V. CONCLUSIONS AND RECOMMENDATIONS
A. Conclusions

From the results expressed in the preceeding section it
can be concluded that it is feasible to study neutron leak-
age and die-away times by the Monte Carloc technique provided
the neutron energies are high, and the assembly used as the
target is small and consists of a8 heavy metallic isctope.
These stipulations make computer time for this code reason-~
able, The results indicate the leakage may be grossly ex-

pressed by an exponential decay law of the type

N=C et

where N is the number of neutrons leasking out, C is a con-
stanty, and )\ is an exponential decay constant.

The exponential decay constant A is a function of both
the geometry and size of the assembly. Its functional de-
pendence on size cannot be clearly determined from the data
obtained in this work. It is, however, observed that the
time decay constant does decrease with increasing volume for
both spherical and cubical shapes, It is also smaller for
cubical shapes than for spherical shapes of equal volume,

At lerge times, as the number of neutrons lesking out
of the assembly becomes smaller and smaller, a high degree

of data scattering and statistical fluctuation is observed
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just as in the case of low counting rates. Therefore, the
Monte Carlo technique and the experimental technique have
large statistical deviations at low count rates,

At very small times, the leakage seems to depart from
an exponential decay law. The exponential law begins after
& certain "stability" has been reached in the leakage pro-
cessy and this can be considered in terms of simple physical

considerations,

B, Recommendations for Future Work

There are numercus possibilities for investigation by
use of the Monte Carlo technique,

The dependence of leakage on energy could be found by
running a2 number c¢f cases for the same material and geo-
metrical conditions with variable moncenergetic neutren
scurces. Also, since neutrons are seldom monoenergetic,
the code should be run with an energy spectrum. This would
make future comparison with experimental datz much more
meaningful. An extra facility was added to the "PULSE"
code to enable it to handle & spectrum of incident neutron
energies, but it was not used in actual runs.

The variation of \ with material is also left to be
explored. Various heavy metals, e.g. iron, bismuth, lead,
or combinations of metals can be used while keeping energy

and geometrical shape constant.
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In addition to the leakage cutput, the "PULSE" code
provides capture, fission, and scattering information which
may be of interest.

Cther codes have been developed, e.g. OSR (13). This
code has been developed and used at Oak Ridge. It is a very
general neutron transport code., It may be run as a check on
the "PULSE" code, or part of OSR may be used in combination
with "PULSE" to write an improved code which will handle more
complicated geometrical shapes, e.g. reactor cores, or shields
on space vehicles.

In addition to the running of a Monte Carlo code, an-
other possibility for future work consists of doing further
thecretical work in the behavior of a neutron pulse in & small
assembly based on transport eguation soclutions.

Finally, &n experiment can be developed using the 1.5.U,
neutron generator. This would presuma2bly be similar to the
type being performed by T. Gozani (7) at General Atomic which
was mentioned earlier. The experimental results could be cor-
related with the results predicted by Monte Carlo.

In the use of this code and obtaining data for its use
other theoretical and experimental problems arcse which should
be investigated, These include such topics as the inelastic
scattering in the continuum region, inelastic scattering from

levels, and neutron cross section data evaluation.
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VIII. APPENDIX A

Random Number Generation

The pseudorandom numbers used in the running of this
code were generated by a2 subroutine called RANDU, This
routine was developed by IBM and was supplied by the Iowa
State Univereity Computation Center. The routine is called
by the FCRTRAN statement CALL RANDU(IX, IY, YFL). For the
first calling, IX is supplied as an input variable. It is
an interger of nine digits or less. 1Y is generated by the
routine and is substituted for IX when ever the routine is
used acain., YFL is the pseudorandom number of nine digits
uniformly distributed between O and 1.0

Following is a listing of the FORTRAN statements mak~-
ing up the RANDU code:

SUBROUTINE RANDU(IX,IY,YFL)
IY = IX* 65539

IF (IY) 5,%5,6
5 1Y = IY + 2147483647 + 1

6 YFL = IY
YFL = YFL*(0.465%6613E-9)
RETURN

The number of pseudorandom, uniformly distributed num-
bers which can be generated before a repetition is encountered
is stated by the I.S.U, Computation Center as two raised to
the twenty-ninth power or approximately five hundred million

numbers,
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IX. APPENDIX B

Directional Cesine Computation

The subroutine ISOANG is used to compute the direction
cosines (ay 3, y) for isotropic elastic scattering. This
routine is supplied with variable GAMMAC (the polar direc-
tional cosine) which is computed or chosen from a prob-
ability distribution. The Z-cooxrdinate directiocnal cosine
v is set equal to GAMMAC, Alpha and beta are chosen so
that

i A I

The subroutine invelves the sclving of the following

eguations:

W1 - Y2

(I“e.l v

Ji - Y2

3“32 o

€)r €y and n are obtained as shown below where R, and
R2 are pseudcrandom numbers generated by RANDU,

81""231"1

:2‘2R2-l

nocel e
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Alsc,y since isotropic center of mass scattering is pre-
sumed, the new velocity (VEL) is set equal to the incident
velocity in this subroutine.
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X. APPENDIX C

Probabilities of Occurrence of Interactions

The probabilities of occurrence of the various nuclear
interactions are computed in the following manner. The mac-
roscopic cross sections for each of the interactions (elastic
scattering, inelastic scattering, fissions and capture) are
computed using the atomic density and microscopic cross sec-
tions which have been supplied as inputs for each of the
twenty velocity croups mentioned earlier. The following
formula is employed in the calculation of these cross sec~-

tions.

5.4 7%a%

Yi,j is the macroscopic cross section for the i-th
interaction with nuclide j. 95,3 is the microscopic cross
section for the i-th interaction with the nuclide j. NJ
is the atomic density of the nuclide j.

These macroscopic cross sections are summed for all
possible reactions with all the nuclides tc get a total
macroscopic cross section XT'

k n

Iy = % z

Ty 1 P43 NS

where n is the number of possible interactions and k is the

number of nuclides.
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The probability for the i-th reaction with the j-th
nuclide is then

The above eguations are used in the subroutine SIGMA
of the "PULSE" code.

In order to find which reaction has taken place, the
subroutine COLIDX is called. COLIDX uses a random number R
generated by RANDU and first compares it to pl,l’ if R is
less than pl,l the first interaction is assumed to have taken
place with the first nuclide. If R is greater then pl,l’
then a comparison is made to the sum pl,l + pl,2‘ Again
if R is less than the sum then interaction 1 is assumed to
take place with nuclide 2. If R is greater than the above
sum it is compared tc the sum pl,l + Pl,2 + p2,l‘ This
procedure continues, adding the probabilities Pi,j one at
a time checking after each addition to see if the sum is
greater than R, If the sum of probabilities is found to be
greater than R after the addition of pi,j’ the i~-th reaction
is taken to have occurred with the j-th nuclide.

From nuclear reactor theory (6) it is found that the
probability P of a neutron traveling a distance x without

being involved in a reaction is given by

P = e X/AT



62
where XT is the total mean free path. It is eqgual E;l where
xr is the total macroscopic cross section calculated above.
This relationship is used to find the distance traveled be-~
tween interactions. Using a pseudorandom number R generated
by RANDU, the subroutine FLITE computes the distance X be-

tween reactions by solving the foliowing equation

X = -xT ln R
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XI. APPENDIX D

Conversion from Center of Mass to Laboratory System

The conversion from the center of mass to the laboratory
coordinate system is accomplished by means of an intermediate
coordinate system (21) whose coordinates have the subscript P
in the following derivation. The center of mass coordinates
have a subscript C, and the lab system has no subscript.

First, two pseudorandom numbers Rl and R2 (in the range
cf 0.0 to 1,0) are generated by RANDU. These are converted
to pseudorandom numbers € and €y respectively by the follow~

ing equations,
Elngl"l

€2
€ and €, now have a range between -1 and +1.

The routine CMLAB is used to perform the calculations
necessary for the conversion., The input to this routine in-
cludes the direction cosines (ai, Bys Yi) all of which are
in the lab system prior to the collision, and a variable

(yc) which is obtained using the expression below,

P 2R0 -1

R is again 2 pseudorandocm number obtained from RANDU.

The center of mass direction cosines (a_, 3 _, vy ) are
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found using the following:

'Jl"{
" c
¢ " &1 1
ﬁc R n
vooE oy
< C

A conversion is now made from the center of mass system

to an intermediate system to obtain the directional cosines

(ﬂps Bp’ Yp)-

P Lk
N y?
: By vy @ac - a3 B,
ﬁp > - " + 51 Ye
2
A/l - ‘Yi

The cosines (a, 3, v) in the lab system can now be cal-

culated.

I W

N1+A

a

2 + 2AYC
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+ A
2
N1 + A% + 2Ay,
+ A
o o Yi ’p
J1 o+ A2 4 2Ay

where A is the mass number of the target nuclide.

In addition to the directional cosines, the lab system
velocity after the collision is also calculated by CMLAB.
2

: XiJl + A + 2Ay£

V'

A+ 1

where Vi is the velocity of the neutren prior to the col-
lision,



66

XI1I., APPENDIX E

Method Used tc Select Values From a
Given Density Distribution

The method employed in cbtaining values for anisotropic
scattering directional cosines and fission velocities is
based on the probability distribution theory and the theory
of cumulative probebilities.

If a continuous distribution of values is given as in
Figure 20, such that the shaded area A can be thought of as
representing the probability that a random veriable X is less
than or egual to X4 then the probability that X is less than
xmax is the entire ares under the curve or a probability of
1.0. The probability that x is less than or equal to xmin
is 0.

If the distribution in Figure 20 is integrated and
normelized (Figure 21), then for any value x; chosen on the
abcissa, the probability that X is less than or equal to
xq is the value of the ordinate Yi corresponding to the point
(xi, Yi) on the integrated curve.

The above concept is used to find the directional cosine
of the angle of exit for elastic scattering given an anisc-
tropic angular distribution. It is also employed in determin-
ing the velocity of a neutron resulting from a fission re-

action given the fission spectrum.
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f(x)

xmin l

Figure 20. The distribution function as an area

F(x)

LoD, Vo it e e T

¥y =P(X<xg) oo - o — o

b . e e . —— -

xmin Xy Xmax

Figure 21. The cumulative distribution function
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The angular distributions for elastic scattering at
various energies (10) were graphically integrated and the
ordinate was divided into 10 equal intervals ranging from
1 to 11. The lower limit of 1 is necessary due to the way
arrays are indexed in FORTRAN, The value of the cosine ©
for the point 11 is taken as +1. The values for the cosine
© for the other integer points 1-10, are read from the inte-
grated curve and stored in an array.

A pseudorandom number between O and 1.0 is generated
in the code "PULSE" by the routine RANDU. This number is
multiplied by 10 and added to 1.0 to give an integer between
1l and 11 and 2 remainder, The cosine is then obtained using
the integer points from the array and the integers generated
by RANDU, The remainder obtained from the random number is
used to linearly interplate between the integer points in
the array.

The fission neutron velocities are obtained in a similar
manner except that the ordinate of the integrated distribu-
tion (9) is divided into 22 intervals 1-22. The pseudorandom
number is multiplied by 20 and then 1 is added; the rest of
the calculation proceeds as described above. The value of
the integer point 22 is taken as the most energetic neutron

of the spectrum.
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XIII. APPENDIX F

A Listing of the "PULSE" Code




(g XeEatayl

i€
11
12
13

14

15

16

70

PULSE MONTE CARLDO CODE

PROGRAMED BY AlE. PROFIC AT MIT IN 1963

REVISED AND UPDATED BY GeFs FLANAGAN AT ISU IN 1967
USED FOR THE CALCULATION OF SLOWING DOWN PARAMETERS
IN FAST METYAL ASSEMEBLIES

DIMENSTION SPUIG)SBEY(Z0),S8T11(20)¢SBFLI20),58C1(20),
1SBE2L20) o SBI2M20) 4SBFZ(20) 4SBL2(20) «VBOUND(Z20)Y4APLIL1O
20200 yAPZ(10,20) 4SBL1(20420),45BL2(20,20),P122)4VL1L20)
BeVLZ(Z0) o SLI20) 4PLIZ2O ) oFPLIZ2) 4 FP2(22) 2 LEAK(LIDOL10),
GNELS (100100 oNINSLLI00)JNFIS(100)KAPT(100)

PAUSE 1

REWIND 10

READ (lyl) XS5 Y¥SeZSPARAJPARByPARC ¢THETAGKS NEUT
FORMAT(TFGBata12,114)
WRITE (342) XSoYSeISePARAJPARBPARCTHETAZKS ¢ NEUT
FORMAT (1ML o AHXS2FBe b 2X e AHYERF B oG9 2N gy FAHISnF B by 2X o SHP
lhﬂhuFH.#¢2Xc5ﬂPAR8-Fa.4.ZX.ﬁHPhRC'FB.Q'ZXQGHTHE7A-F8.4.
IR IHKS=1 292X o SHNEUT=T14)

KREAD (1,3)8P

FORMAT(L10FT7.4)

WRITE (3.4)59

FORMAT(LHG g 2HEP=1(FT6)

HEAD (1o5)XMAX gYMAX g ZMAX JRMAN g KAS

FORMATIAFB.4,12)

WRITE (3¢6)AMAX YMAXyIMAX RMAX JKAS

FORMAT(LHO ySHXMAX=F B o4 92X 9 SHYMAXZFB 4 492X 9 SHIMAK=FB 442X
1o BHRMAX=2FR o4 42X y4HKAS=12)

READ(L7ITD TCHEMINJECH KT L 4KT2

FORMATIAFT«34213)

WRITE (340)TOTCHeEMINSECHKT14KT2

FORMAT(LHO y AHTO=F Ta 392X s AHTCHEF T A9 Xy SHEMIN=FT 4 392X 4 4H
TECHEFT e 392X s @HKTL=13,2X,4HKT2=]13)

READ(1,9) P

FORMAT(11F6.2)

WRITE(3,10)P

FORMAT(LIHO 4 2HP=11Fbe2/3X911F642)

READ(L1,11)VROUND

FORMAT(IO0FT7.4)

WRITE(3,12)VBOUND

FORMAT(1HO g THVBUOUND=10F T4/ 8X 4 LOFT44)

READUILo13) ADLyALGALIML SLIMLCINLoVSTL FNUL,DELNUL,KIAL
FORMAT(FTe542FTu245FB.4,12)
HRITE(3:14)A01 Al oALTMYoSLIMEGCINT o VSTL +FNULSDELNULSKIAL
FORMAT(LIHO p4HADI=F T 542X g 3HAL2F 7029 2X6HALIMI=FTL2,2%,6
IHSLIMIF 8ub e 2 Xy SHOINL eFB oGy 2A 35 HVST12FB o4 2Ky SHFNUL=FB,
2h¢ 2Ky THOELNULI=F 842X SHKTAL=]2}

READ(14151)88E1

FORMAT(L1O0FT7.3)

RO 16 J=1,20 v

SBEL{J)=ADL#SBEL(J)



71

WRITE(3,17)S8EL
17 FORMATULIHO 4HSBE=LOFT43/8X 4 10FT 43}
READ(L1y15)8811
00 18 J=1,20
18 SBRIlL{J)I=ADleSB1LJ)
WRITE(3,19)5811
is FORMAT(IMHOAHSBI=10FTL3/8X410FT43)
READ(I,15)88F1
D0 20 Jd=14+20
20 SEF1{J)=ADL=SBF1LY)
WRITE(3421)58F1
21 FORMAT(IHO 4 4HEBF=210FT743/5X4 10FT3)
READ (1,15)88C1
B0 22 Jd=1,20
22 S8C1LUJI=ADL=S8CLLY)
WRITE(3,23)88C1
23 FURMAT(IHO yAMSBC=10FT7.3/75X,10F7:3)
READ (1,15)AP1
WRITE(3424)AP1
) FORMAT({IHO g AHAP=LOF T o 3/4X s L0F To 3/4XK 4 10F T 3/74X10F T 374X
1o lOF Ta3/74X 3 10FT o 3/4X s 10FTo3/0Xs 10FTo3/4X10FT743/4%410F T
2376X 4 10FT.376X 4 10F T 3/4X 0 10FTo3/4X 10T 374X910FT4374%,1
AOFPTe3/4X s L0F Ta3/74X o 10F T 376X 10FT3/4%410FT43)
READ (1l415)VL]
HRITE(3,25)VL1
25 FORMATULIHO  OMVL=10F T4 3/74X,10FT7.3)
READ (1,15)58BL1
WRITE(3,26)5BL1
26 FORMATIIHO y4HSBL=10F T3/ (5X10FT73))
READ (1.27)FPL
27 FORMAT(11F64.3)
WRITE(3,28)FP1
28 FORMAT(1HO s 3HFP=l1F6.3/74X,11F6.3)
READ (1o13)AD25A2ALTIM2,5LIM2,CINZIVSTZFNUZ2,DELNUZ KTIAZ
WRITE(3)29)AD24A2sALTIM24SLIM24CIN2yVST24FNU2,DELNU2,KTIAZ
29 FURMATIIHU s 4HADZoF T o B4 2X s 3HAZ2F T o 242X 4 6HALIMZ=FTa208%4 6
XHSLIHZ*FS&#.EX;QHCINZ*F&.&.zx,ﬁHVSTanﬁ.#.Zx.5HFNUZ¢F$.
ZHy2XTHDELNUZ=FB 492Xy SHKTIAZ=12)
IFLADN2)I40,40,30
30 READ (l415)5BE2
60 31 Jd=1,20
31 SBE2(J)=AD2=SBE2(J)
WRITE(3,17)SBE2
READ (1,15)8812
DO 32 Jd=1,20
3z SBIZUJ)=AD2S5BI2(J)
WRITE(3.19)5812
READ (1,15)58F2
DO 33 J=1,20
33 SBF2(J)=AD2%5BF2(J)
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WRITE (3,21)88F2
READ (1,15)88C2
00 34 Jg=1,20
EL SBC2UJ)=A02«58C2(J)
WRITE (3,23)58C2
READ (1,15)aP2
WRITE (3,24)AP2
READ (1s15)VL2
WRITE (3,25)vL2
READ (1,15)58L2
WRITE (3,26)5BL2
READ (142T7)FP2
WRITE (3,28)FP2
60 10 %0
40 DO 41 Jd=1,420
41 SBE2(J)=0.0
&2 00 43 J=1420
43 S812(Jd)=0.0
44 DO &5 J=1,20
4% SBFZUJ)Y=0.0
46 N0 47 J=l,20
&7 S8C21J)=0.0
18] KEWIND KTL
REWIND KT2
KT=KT1
MULT =1
NL =0
ME =6
NS=0
NT=0
NF=0
NLTD =0
NGTHR =0
NGZIR =0
NLME =0
NGER =0
NOSL =0
KSCAT=D
IPU=C
[TGT =0
READ (1.90)1X
Q0 FORMAT(I9)
91 READ(1,95) JJ
9% FORMAT(IS)
100 00 BO1 N=1l,MEUT
107 IPU=1PU+]
ITOT=1TOT+]
IF{IPU~-S00)110,110,862
862 WRITECLOMITOV I XML yNCoNSeNFoNLTD ¢NGTRgNGZR g NLME ¢NGER,
INOSLoLEAK JNELS o NINS o NF IS o KAPY
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iPU=1
WRITE(3,863)i7T07

863 FORMATIIH +18)

110
120

203
208
207
209

211
21%

REWIND 10

CALL SOURCE(ALPHAJBETA CAMMAVELsXeYoZoTIME,PARALPARE,
IPARCG o XS o YS o259 IMAXZTHETASP K5, 1X)

CALL SIGMA(VELSBEL SOEZ2SBILSBIZ2ySBFL,5BFZ,58CLSEBC2,
LADLs ADZ2 o VBOUND y THPP 4 PEL s PEZ 4 PILyPI2+PFLoPF2,4PC1,4J)
IFLJ)Y1224122,127

NT=NT+]

IFINT=5)123,123,4124

GO TO (110,809,820) 4MULY

WRITE(34125)NT

FORMAT(IMO 2 3HNT=12)

GO TO 90t

NT=0

CALL FLITE(DIST TIMET oTMFPoVEL,IX)

GO TU (145,1504155) ,KAS

CALL QT?E‘ALPN‘.EET‘&G&HHQ&XngZ,Xﬂﬁx,YHhx;ZNAX,Dlsrﬁ}
CALL POST(ALPHAWBETAGAMMA X Yol o DISToDISTRBSTIMEZTIMETy
1VELKGED)

60 TO(L60.600) 4KGED

CALL OTCR{ALPHASBETAJGAMMA X oYy ZpRMAXJINAX,DISTH)

GO TO 146

CALL DYSBIALPHARETA,GAMMAL X Yo LyRMAXLDISTE)

GO TO lL4é

IF(ADZ2)16141614165

CALL COLIDL(PEL P11 4PFL,KCOLyIX)

GO0 YO 17¢ _ »

CALL COLIDZ2(PELWPEZ PILPI24PFLPFZ4PCLKCOL,IX)
KTYPE=KCOL/ZL1D

KNUCL=KCOL=(LO=KTYPE)

GO TO (20043004,400,500) 9KTYPE

CALL ELTAL(TIME qTOaTCHZ o IMAX JKELS)NELS)

NS=NS+]

GO TO (2034208020792074209) 4KELS

NLTD=NLTD+1

GO TO 209

MOTR=NGTR+]1

GO TO0 800

NGZR=NGIR+]

GO TO 800

KSCAT=KSCAT+1

IF(KSCAT-100)2110211,225

GO TO (215,220) JKNUCL :

CALL ELSCAT(ALPHALBETAyGAMMAGZVEL AL ALIML SLIML,APLyJ,
11X)

60 TO 120

CALL ELSCAT(ALPHAJBETAZGAMMAGZVELyAZ sALTIMZySLIMZWAPZ
11x)
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GO0 1O 120
225 MOSL =NOSL+]
KSCAT=(
G0 TO 800
300 CALL INTALUTIME ¢TDSTCHaKINS 4NINS)
NS=NS+]
GO TO (3034305430543059307),KINS
303 NLTO=NLTD+]
G0 TO 307
305 MEGTR=NGTR+]
GO YO eao
3067 KSCATsKSCAT+1
IF(KSCAT-100)3209,309,320
309 GO TO (310,315 4KNUCL
310 IF(VEL~VST1I311,312,312
311 CALL LEVELIVEL,SBLL1VBOUNDPLeJ)
312 CALL INSCAT(ALPHARETAGAMMAZVEL AL CINLyPyPLaVLI,VSET]
1sKIALSIX)
GO0 TQ 120
315 IFIVEL=-VST2)316,317,317
316 CALL LEVELIVELsSBL2,,VBOUND¢PLJ)
317 CALL INSCAT(ALPHABETA CAMMAZVEL JAZsLINZyPoPLIVLZWVSTZy
IKTAZ ¢ IX)
GO TO 120
320 HOSL =NOSL+1
KSCAT=Q
G0 10 800
400 CALL FISTAL(TIMEZTDsTCHKFIS,NFIS)
KS5CAT=(0
GO TO (4029404,40444046,406)4KF15
402 NLTO=NLTD+1
GO TO 406
404 NGTR=NGTR+1
G0 TO 8OG
46 50 TO (4074409) 4KNUCL
407 CALL FISSNUXoYoZoVELTIME  FPLFRULSDELNULNF KT 41X}
GO TO 800
&£00 CALL FISSNUXsYoZoVELyTIMESFPZ4FNUZoDELNUZyNF4KT4IX)
&10 60 TO 800
500 CALL CAPTAL(TIME TDTCHKCAP+KAPT)
NC=NC+]l
KSCAT=Q
GO TO (504,50648064506,507) +KCAP
544 NLTO=NLTD+1
GO TO 800
506 NGTR=NGTR+1
S07 GO0 TO 800
6G0 CALL LEKTALITIME VEL »TDyTCHyEMINSECHKLEKHJLEAK)
NL=NL+L
KSCAT=({



604
606
608
610
611

800
801

803

807

a0s

809

811

814

849

850
851

8s3

855

75

GO TO (60448069608 46109611) KLEK
NLTO=NLTD#1

60 TO 800

HNGTR=NGTR+]1

60 TO BOO

NLME=NLME+]

G0 TO 800

NGER=NGER+1

&0 70 8OO

GO TO (80148094820 ) yMULT
CONT INUE

KS=1

60 TO 850

MULT=2

REWIND KT1

REWIND KT2
IFINF)BE04,850,807

N=NF

WRITE(3,808INF
FORMAT(1HO 4 3HNF=18)

NF=(

fN=N=-1

IF(N)1614,811,811
READIKTL)IXS YSo 25 PARAZTHETA
KT=KT2Z

GO YO 197

MULT =3

REWIND KT1

REWIND KT2
IF(NF)IBRS0,850,818

N=NF

WRITE(S,808)NF

WNF =

N=h=-]

IF(N)IB03,822,822
READ(KT2IXS s YSsZSoPARAZTHETA
KT=KT1

GO 7O 107

HEADCLyl) XSoYSZ5,PARAPARB4PARCyTHETAJKS yNEUT
WRITEL392) XS9YVS59Z25+PARA,PARBSPARC, THETA KSyNEUT

G0 TO 100

WRITE(3 4851 INLeNCyNSyNF NLTOZNGTR ¢NGZR g NLME ¢ NGER yNOSL

FORMATUIML s 3HNL=T By 2X o 3HNC =8 92Xy 3HNS=I 842Xy 3HNF=18/1HO,
LSHNLTD =T 802X o SHNGTRE[ 842X g SHNGZR=[8 92Xy SHNLME=]1 842Xy 5HNG
JER=IB,2X ¢ SHNOSL=T8)

WRITE(34AS53)LEAK
FORMAT(LHO s SHLEAK=2CI6/(6X20161))
WRITE(3,855)NELS
FORMAT ( 1H4 o SHNELS=2016/(6X,20186))
WRITE(3.85TININS
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865
866

870
871

867
866
900

76

FORMAT (LH4 s SHNINS=2016/(6X20161))
WRITE (3,859INFIS

FORMAT(1H4& SHNFIS=2016/7(6X20161))
WRITE (34861)KAPT

FORMATL1HA4, 5HKAPT=20167/(6X42016))
WRITE(D,866)1X

FORMAT(1HO4110)

IF(NF) 871,871,870

IF(ITOT-NEUT) 803,803,871

Jd=Jd~i

IF(JJI) B6T,867,849

WRITE(3,868)
FORMAT(IHO o 1THPROCGRAM COMPLETED)
END
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SUBROUTINE SOURCE(ALPHAZBETAZGAMMAZVEL o XoY oL oTIMEPARL,

I1PARB yPARC g XS o YS o250 ZMAX g THETA JSP 4K, I X)
DIMENSION SPL10)

GU TOU10,204304407 4KS

YuXS

Y=YS

=75

CALL RANDU(CIX, 1Y, YFL)

IXx=1Y¥

GAMMAC=2,08YFL~1.0

VEL=PARA

CALL ISOANGUALPHASRETAZCAMMA,CAMMAC yVEL ¢ IX)
TIME=THETA

RETURN

CALL RANDUCIXys1Y,YFL)

IX=tY

XeXS#{2.,00YFL=~1.0)

CALL RANDU(CTIX,IYsYFL)

PxX=fy

Ya¥Se(2.08¥YFL~1,0)

=15

GAMMA=] L

ALPHA=G .U

BETA=0.0C

CALL RANDU(IXo1Y.YFL)

IX=1Y

VEL=PARA~PARBeYFL

TIME=0.U

RETURN

CALL ANGLS(SP,GAMMAC,IX)

CALL RANDULIX IY,YFL)

[X=1Y
VEL=PARA-PARBaYFL~PARC2(1.0~-GAMMAL)
CALL ISOANGIALPHAJBETALGAMMA,GAMMAC 4VELIX)
Se=(=~IMAX~ZS) /GAMMA

Y=Se ALPHA

Y=S«BETA

I==7MAX

TIRE=S/VEL

RETURN

CALL TARGET(ALPHABETAGAMMAZVELyXyYoZo TIME,PARA,PARS,

LPARC 4 1X)
RETUAN
END
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SUBROUTINE ANGLS(SP,GAMMAC, IX)
DIMENSION SPLLO)

CALL BRAMDULIXs1Y,YFL)

[X=1Y¥Y

Mel0.08YFL+1.0

REM=YFL=0s L#FLOAT (M=1)
IF(10=-M)30,10420
GAMMAC=SP{LO)+(REM/D1) (1. 0~5PL10))
RETURN

GAMMAC=SP (M) +{REM/CL1)#{SPIM+)=5SPIM))
RETURN

GAMMAC=]1 .0

RETURN

END
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SUBROUTINE TARGET(ALPHABETAZCAMMAZVEL g XaY9ZTIME,PARA,
1PARB yPARC ¢ I X)

X=X

Y=Y

i=2

ALPHA=ALPHA

BETA=BETA

GCAMMA=GAMMA

TiME=G.0

CALL RANDUCTX,1Y,YFL)

IX=1Y
VEL=PARA-PARBeYFL-PARC#ABS (GAMMA)
RETURN

END
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SUBROUTINE SIGMA(ENySBEL,SHBE2.SB11,50124SBF1,SBF2,58C1,
1SBC20ADL,ADZ yEBOUND ¢ THFP o PEL4PEZ2PILoPIZ4PFL4PF2,PCLl4J)
DIMENSION SBEL(20)4SBEZ(20),5BIL(20),SB12(20),88F1(20)
L1SBF2(20),88C1(20),SBL2(20)EBOUNDL2O)

10 CALL GROUP(EN,EBDUND,y JyKGP)

J=J
11 GO TO (12414)4KCP
12 J=0

13 RETURN
14 IF(20-J)60460420
20 SEL=FINDUEN, JyEBOUND,SBEL)
21 SI1I=FIND(EN,JoEBOUND,,SB11)
22 SF1=FIND(EN JoEBDUND, SAFL)
23 SCl=FIND(EM, JoEBOUND,5BC1)
24 IFLAD2)25,25,30
25 SEZ2=0.0
26 §12=040
27 F2=0.0
28 SCE=0.0
29 GO TO &0
30 SEZ=FINDIEN s JoEBOUND,,SBEZ)
n S12=FIND(EN, JyEBOUND,,SBTZ)
32 SF2=FIND(EN, JoEBOUND, SBF2)
33 SC2=FIND(ENJoEBOUND 4 SBC2)
&0 TMFP =]l 40/ (SEL1+ST14SF145C1+SE2+4851245F245C2)
41 PEL=TMFP2SE]L
& PIl=TMFP=S]1
4% PFI1=TMFPa5F1
&ty IFLADZ)45 445,50
45 PCl=1.0-PEL~P11~PF1
46 IFIPCL=Ce0001)47,48,48
47 PLi=0.0
48 RETURN
b 14 PCl=THFP=5C1
%1 PEZ=TMFPaSER
52 PI2=THFPeST2
53 PF2=TMFPeSF2
54 BETURN
60 SEL=SBEL1(20)
61 SIl=SeIl(20)
&2 SFE1=8BF1(20)
&3 5C1=8BC1120)
64 SEZ2=SRE2(20)
65 Siz=S812(20)
b6 SE2=SBF2(20)
&7 SC2=8RC2(20)
68 GO TO &0
END
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13
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SUBROUTINE GROUP(EN,TBUOUNDy JoKGP)

DIMENSION EBOUND(ZD)
IFLEN~ERBOUNDILY 11,213,113
KGP=1

RETURN

J=20
IF(EN~EBOUND(J))15,91491
J=10
IF(EN-EROUNDEI)YILT491,29
J=5
IF(EN-EBOUND(J) 19491 ,25
J=2
IF(EN~EBOUND(J))T90,91421
J=d+l
IF{EN-EBOUNDIJ)I90,91423
RENES
IF(EN-EBOUND (Y )IF0,91,491
J=7
IFIEN-EBOUND(I)I2T 491,21
J=d-1

GO TO 24

J=1%
IFIEN-EBOUNDUJ) )31 951433
J=12

IF(EN~EBOQUNDLJ) I2T991,21
J=17
[FIEN~EBOUNDIJIY)IZ2T991221
Jug~1

KGP=2

RETURN

END



82

FUNCTION FINDIEN,JoEBOUNDSBX)

DIMENSION EBOUNDI20),88X(20)

FING=SBX(J)+ (EN-EBOUNDC(JI) ) #(SBXLJ+1)=~SBX(J) I/ (EBQUND(J+]
L)=EBOUNDEJ))

RETURN

END
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SUBROUTINE FLITE(DISTTIMEY sTHFP3VEL#IX)
CALL RANDULIXoIY,YFL)
IX=1Y
IF(YFL=.0000654)10410413
C=ALOGLYFL)
DIST=TMFP=(~C)
IFIDIST)ILO1641 4
TIMET=DIST/VEL
IF(TIMET)10,18418

RETURN

END



84

SUBROUTINE POUSTUIALPHABETA CAMMA Xy Y92y DIST,DISTRBTINE v
ITIMET S VEL +KGEG) '
IF(OISTE-0DISTIZ20020410
 §¢ XaX+ALPHA=D] ST
Y=Y+BETA=QIST
I=7+CAMMARDT ST
TIMESTIMESTIMETY
KGEO=1
RETURN
20 X=X+ ALPHA=DISTR
YaY+BETA«DISTH
I=7+GCAMMADISTR
TIME=TIME+DISTB/VEL
KGEQ=2
RETURN
END
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SUBROUTINE DYPB(ALPHABETA GAMMAy XY o Z 9 XMAX g YMAX pZMAX

101ST8B)
IF(ALPHA) 291,42
1 01=10000.0
02=10000.0
GO Y0 3
2 Dl={ XMAX-X)/ALPHA
Pz (XMAX+X )} /ALPHA
3 IF(BETA)S 1495
4 3=10000,0
D4=10000.0
GO TO ¢
5 OZ=({ YMAX~Y) /BETA
Ddgz- {YMAX=-Y)/BETA
6 IF(GAMMA)B47,48
7 05=10000.0
DE=10000.0
60 TQ 9
] DS=w{ IMAX~2) /GAMBA
Dh=~{IMAX+Z ) /CAMMA
U] IF(OL)10,11411

10 N1=10000.C

11 IFLDZ2112413,13

12 D2=10000.0

13 IF(D3)14,15,15

14 D3=10000.0C

] IF(D%)LE41T417

16 D4=]0000.0

17 IF(D5118,19,419

18 PE=10000.0

19 IF(D&EIE0421,21

20 16=10000.0

21 DISTH=AMINLIDLyD2,03,04,05,406)
IF(DISTR)IZ3,24,424

23 GISTHa=0,0

24 RETURN
END
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SUBROUTINE DTCBIALPHAGBETAZGAMMA s X g Yol ¢ RMAX o ZMAX,DISTE)
OMR=XeALPHA+Y#BETA+ T «GAMMA
ReSORT(Xned+Yaa2+lne2)
IF{GAMMA~LLD1Te8,9

8 01=10000.0
GO0 T4 20

q Cle(2eGAMMA~OMR+SORT((72GAMMA-COMR Yo e24( 1 JO-CAMMAR®D } »(
IRMAX®e 24+ ou-Rau2)) ) /(1.0~GAMMARRD)
IF(D1)10,20,20

1¢ Di=s~11

18 IF{GAMMALZO,194 20

19 D2=10000.0
UB‘IQGGQQQ
GO TO 33

20 D2=( IMAX-Z ) /GAMMA
03==~(IMAX+ZL)/GAMMA
IF(DZ2)30431431

30 D2=10000.0

31 IF{03)32:33,432

32 U3=10000.0

33 DISTB=AMINLIDL,02,03)
IFLDISTE)RS,40,440

38 DISTH=~DISTH

&1 RETURN
END
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SUBRUOUTINE DTSBIALPHAZBETA GAMMA X oY s ZoRHMAX,DISTR)
OMR= X2 ALPHA+YeBETA+ 7 oGAMMA

ReSORT{Xes24You2elnn?}
DISTH=«UMR+SORT(OMRu# 24+ RMAX 0 2 ~Ruu2 }
IF(DISTR)IZ2Q.10,410

RETURN

DISTE==-DISTH

G0 T4 5

END
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SUBROUTINE LEKTAL(TIMEGVEL TOsTCHoEMINQECHKLEK LEAK)
DIMENSION LEAK(1T0410)

10 ITIME=(TIME~-TO) /TCH
ITIME=]ITIME+]

i1 IF(ITIME~L1)12y1491%

i2 KLEK=]

13 RETURN ‘

14 IF(LO0~ITINMEYLSs1Te)7

15 KLEK =2

18 RETURN

17 IEN=(0,522T7T#(VEL»22)~EMIN)/ECH

18 IF(IEN-1)19421421

19 KLEK=3

20 RETURN

21 IFL10=-TEN)IZ2242442%

4 KLEK=4

23 RETURN

24 LEAK(ITIMEZIENI=LEAK(ITIME IEN)#L

25 KLEK =5

26 RETURN
END
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SUBROUTINE COLIDL(PELPILyPFLKCOLyIX)
CALL RANDULTIXoT1Y.YFL)

IX=1Y

IF(YFL=PEL)20,411011
IF(YFL=PEL1=PI1)30,12,12
IF(YFL=PEL=PI1=-PFL1140413,13
KCOL=4]

RETURN

KCOL =11

RETURN

KCOL=21

RETURN

KCOL=31

RETURN

END
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SUBROUTINE COLIOZ2(PELWPEZ4PIL4PIZ4PFLyPF2yPCL,KCOLyIX)

9 CALL RANDUCIX¢IY2YFL)
IX=1Y
1¢ IF(YFL=PEL)20411,11

11 IF(YFL=PEL=PE2)30,12412
12 IF(YFL=PEL-PEZ=PIL)40,13,12
13 IF(YFL=PEL=PER2=PII=P12)580,14,414
14 [FIYFL=PEL=PE2=-PI1~PI2=PF1)60,15,415
15 IF(YFL=PEL=PE2=PI1-PIZ=PFl=PF2)T0916,16
1é IF(YFL=PEL~PEZ~PI]=PI2=PEL-PEZ~PLL)BU,90,90
20 KCOL=11
21 RETURN
30 KCOL=12
31 RETURN
40 KCOL=21
41 RETUBN
50 KCOL=22
1 RETURN
60 KCOL=31
61 RETURN
0 KCUOL =32
T1 RETURN
80 KCOL=41
81 BRETURN
b 14] KCOL =42
91 RETURN
END



91

SUBROUTINE ELTAL(TIMETDTCHyZyZMAX 4KELSyNELS)
DIMENSTON NELS(100,410)
ITIME=(TIME=TD)/TCH
ITIME=TTIME+]
IFCITIME~L1)12414414
KELS=1

RETURN

IF(LO0=1TIME)LS 17417
KELS =2

RETURN
12=6.04(5.0%2)/ZMAX
IF(1Z-1119,21,21
KELS=3

RETURN
[F(10-12)2224,24
KELS =4

RETURN

KELS =5
NELS(ITIME1Z)=NELS(ITIME,IZ)41
RETURN

END
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SUBRUOUTINE ELSCAT(ALPHAJBETAGAMMAZVEL A ALIM,SLIN,AP,

11X)

DIMENSION AP(10,20)
IF(VEL=-SLIM) 11,2020
CALL RANDU(TIX,1Y,YFY)

IX=1Y

GAMMAC=2,.0#YFL~1.0
IF(A-ALIMIL3,415,415
CALL CMLAB(ALPHAJBETAGAMMA ,GAMMAC ¢ VELy IX)

RETURN

CALL ISOANG(ALPHAGBETA2GAMMA4GAMMAC VEL,y IX)

RETURN

CALL ANGLE(JosAPGAMMAC, 1X)

G0 10
END

12

92

Je



¢
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SUBROUTINE ANGLE(JAP4GAMMAC,IX)
OIMENSION AP(10,20)

CALL RANDUCTIXoIY,YFL)

IX=1lY

MelOO0#YFL*1.0

REM=YFL~U«l#FLOAT (M~1)

IF{1O-M)30410,20

GAMMAC=AP (103 J)#(REM/DJLIIn(1.0-AP(10,J))
RETURN

GAMMAC=AP (Mg JIH(REM/DL LI (AP (Me Ly J)=AP(MJ))
RETURN

CAMMAC=1 .0

RETURN

END
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SUBROUTING CHMLABIALPHAZBEETA GAMMAZGAMMAC  VEL oA, IX)
CALL RANDUCTIX 1Y,YFL)

{X=1Y

Ki=YFL

CALL RANDUCIXyIYeYFL)

IX=1Y

RZ=YFL

ETA= {2 0nR]1~140) 024 (2, 00R2=10)nn2
IF(ETA=140)14,14,10

ROOT=SORT{(1.U~CAMMAC®=2 ) /ETA)
ALPHAC=(2.02R1~=1.0)=RO0OT

BETAC=(2.,0#R2-1.0)#RQO0T

ETG=SORT(140~0AMMARED }

ALPHAP=({ (ALPHA®CAMMAXALPHAC-BETA=BETAC)Y /RTG ) +ALPHAw
1GAMMAC

GETAP=((BRETA#GAMMASAL PHAC+ALPHA=BETAC)/RTG)+BETA=GAMMAL
GAMMAP=~ALPHAC*RTGHCAMMAGAMMAC
RTA=SORT(1.0+Awe242 ,OeAnGAMMAC)
ALPHA=(ALPHA+ASALPHAP)/RTA

BETA=(BETA+A=BETAP) /RTA

CAMMA={CAMMA+AeCAMMAPR ) FRTA

VEL=(VEL=*RTA)/(A+1.,0)

RETURN

END
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SUBRUUTINE TSUANG(ALPHABETAGAMMAyCAMMAC,VEL,1X)
GAMMA=GAMMAC
CALL RANDULIXysIY,YFL)

[X=1Y
R1=YFL

CALL RANDULIXo1Y,YFL)

IX=1Y¥
RZ=YFL

ETA=(Z240sR1~1e0)0e24{2,0#R2~1,0)0n2
IF(ETAYZ0 420014

IF(ETA=1.0)15,15,11
FOOT=SQRTI(1.0~CAMMA®=2 ) JETA)

95

ALPHA=(2,0R1~1.0)=R0O0T

BETA={2.08R2=1,0) «ROGT

VEL=VEL

RETURN
GO TO
END

i1
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SUBROUTINE INTAL(TIME TDsTCH KINSHNINS)
CIMENSION NINS(10QO0)
ITIME=(TYIME-TD)/TCH
ITIME=ITIME+]
IF(ITIME=-L1)12414,14
KINS=1

RETURN
TF(LO0-1TIMEILS 17417
KINS=2

RETURN
NINSCITIME)=NINS(ITIME)+]
KINS=5

RETURN

END
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SUBROUTINE LEVELIVEL»SOLVBOUND sPLeJ)
DIMENSION SBLIZ0y20)VBOUNG(ZO) 4PLEZOYSLLEZ0)
[IFI20-J)10410,20

B0 195 L=1.20

SLIL)=SBLIL,20)

LCORY INUE

GO TO 25

00 25 L=1420
SLALY=SOLIL«JIH(VEL-VEOUNDCJI) Yo {SBLIL I+ )=SBLIL,J /L
IVBOUND(J+1)=-VBOUND(J))

CONT INUE

SUM=0.0

o0 30 L=ige20

SUM=SUM+SLIL)

CONT INUE

SUMI=1.0/5UNM

DO 35 L=1,20

PLIL)=SUMTI=SLIL)

CONT INUE

BETURN

END
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SUBROUTINE INSCAT(ALPHASBETA GAMMAyVEL)AyCINaPyPLIVLVST

19KIAGIX)

DIMENSION PLUZQ)VLI20),P(22)
10 GO TO (11414),K1A
11 CALL RANDULIX,I1Y,YFL)

IX=1Y

GAMMAC=Z o UeYFL-1.0
12 CALL ISOANGUALPHABETALGCANMA,GAMMAC sVEL4IX)
13 GO TO 24U
14 CALL ANGLI(VYEL sA4GAMMAC)
18 GO TQ 12
20 IF(VEL=-VET)21430,30C
21 CALL RANDUCIXsIYsYFL)

TX=1Y
22 L=}
23 SUM=(,.0
24 SuUmsSUM+PLIL)
258 IF(YFL=S5UM)ZR,28426
26 L=t+1
27 G0 TC 24
28 IFIVEL®e2-VL(L)=*22)35,29,29
29 VEL=SORTIVEL»e2~VL(L)®e2)

RETURN
30 CALL INSPECIVEL yCINyPLIX)
31 RETURN
35 GO TO 11

END
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SUBROUTINE ANGLI(VEL JA,GAMMAL)
GAMMAC=] .0

VEL=VEL

A=A

RETURN

END
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SUBROUTINE INSPECIVELCINGP,IX)
DIMENSION P(22)

EMAX=CINeVEL

VMAX=SQRTIEMAX/ 08227}

CALL RANDUCIX.1Y,YFL)

IX=1Y

K=2QOnYFL4],0
REM=YFL-0.05«FLOAT(K~1)
WeP{K)+(REM/DLO5) e (P(K+]1)=PIK))
VEL=WeVMAX

RETURN

END
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SUBROUTINE CAPTAL(TIME TOTCHKCAPKAPT)
DIMENSION KAPT(10Q)
ITIME=(TIME-TD)/TCH
ITIME=ITIME+]
IFCITIME~1)12414,14
KCAP=]

RETURN

IF(100-ITIME)LS 417417
KCAP=2

RETURN
KAPTUITIME)=KAPT(ITIME)+]
KCAP =5

RETURN

END
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SUBROUTINE FISTAL(TIME, TDTCHaKFISINFIS)
DIMENSION NFIS(100)
[TIME=(TIME-TD) /TCH
ITIME=ITIME®]
IF(ITIME~L)12414416
KF[S=1

RETURN

IF(100~1TIMEILS 417917
KFIS=2

RETURN
NEISUITIME)=NFIS(ITIME)+]
KFIS=5 '

RETURN

END



103

SUBROUTINE FISSHIXgYoZ o VELpTIME oFPFNUSDELNUZNF KT, IX )
DIMENSION FP(22)
FISNO=FNU+DELNU=(VEL=#2)
IF{FISNO~340)20,30,40

20 CALL RANDULIXa1YsYFL)
[X=lY
RI=YFL+2.0
[F(RI-FISNO)3Q,30425

23 i=2
GO T4 8¢

30 i=3
GO 10 50

4G IE(FISNO=4,0)41 449449

41 CALL RANDULIX,IVY,YFL)
[X=1Y
R2=YFL+3.0
IF{RZ~FISNO)A9,49,45

45 (=3
¢Q TO 50

ay =4

50 D0 60 N=l,1

51 CALL RANDUCIX 1Y,YFL)

I1X=1Y
K220 00YFL#1,0
REM=YFL-0,05FLUOAT(K=1)
PARA=FPIK)I+(REM/Q.05)e(FP(K+1L)-FP(K)])

53 THETA=TIME
XS=X
YS=Y
285=7
WRITE(KTIXS YSo IS5 +PARALZTHETA

61 MNF=NF+]
RETURN
END
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